If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6q^2-24q-5=0
a = 6; b = -24; c = -5;
Δ = b2-4ac
Δ = -242-4·6·(-5)
Δ = 696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{696}=\sqrt{4*174}=\sqrt{4}*\sqrt{174}=2\sqrt{174}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{174}}{2*6}=\frac{24-2\sqrt{174}}{12} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{174}}{2*6}=\frac{24+2\sqrt{174}}{12} $
| 11r=66. | | 19x-(8x-2)=57 | | 25x=5.7 | | 12x^2-4x+6=0 | | 5(x^2+4x+4)=(x^2-6x+9) | | 3x-6=14-5x | | (x+15)(x-12)=180 | | (x-12)(x-6)=-32 | | 3x²+6-12=0 | | 17j^2+38j=0 | | 20c-5-6=15c+4 | | P(x)=x×x-x-12 | | (13x^2)+2x=0 | | 16m^2-64m=0 | | (x-11)(x-7)=-4 | | 16m²-64m=0 | | 3(a-2)-a=a+7 | | x²-20x+5=0 | | 85+2x-x+10=180 | | 85+2x-x+10=360 | | 10x-1+10x+7+9x+6=180 | | 43+x-1+x=180 | | x-1+x+43=360 | | 16+2t=t+9+4 | | x+77=85 | | 2x+6+3x-2+4x-4=180 | | 16t^2-70+49=0 | | 2x+6+3x-2+4x-4=360 | | 49x^2+1=25 | | 2(x-4)^2=12 | | (x^2)+(1.8x)^2=729 | | -6+(x+4)^2=0 |